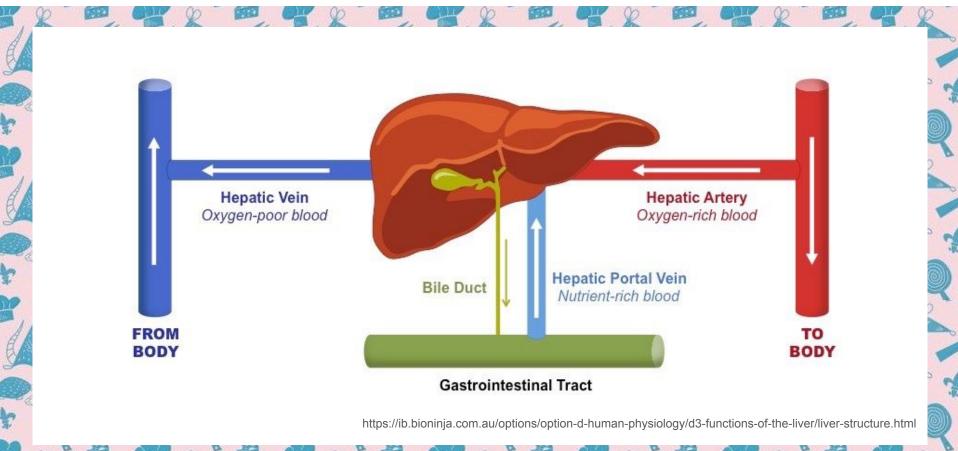


Gastroenterology and Hepatology

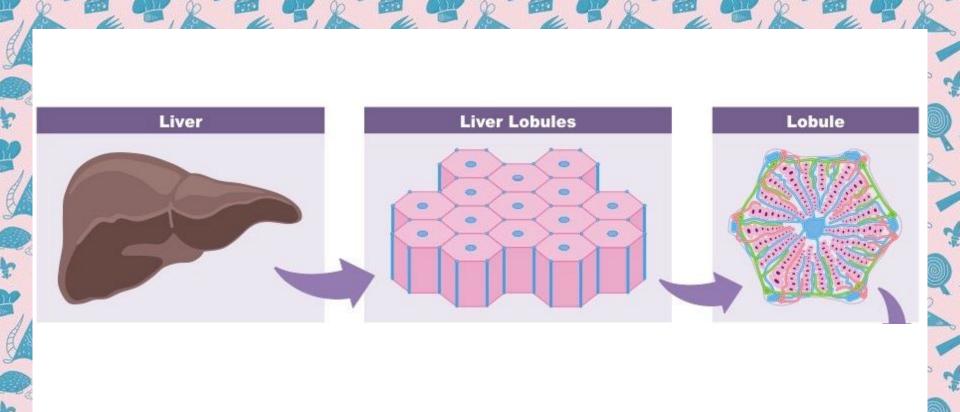
R2 Tanapat / Aj.Nopaorn

Liver function test Interpretation

Outline

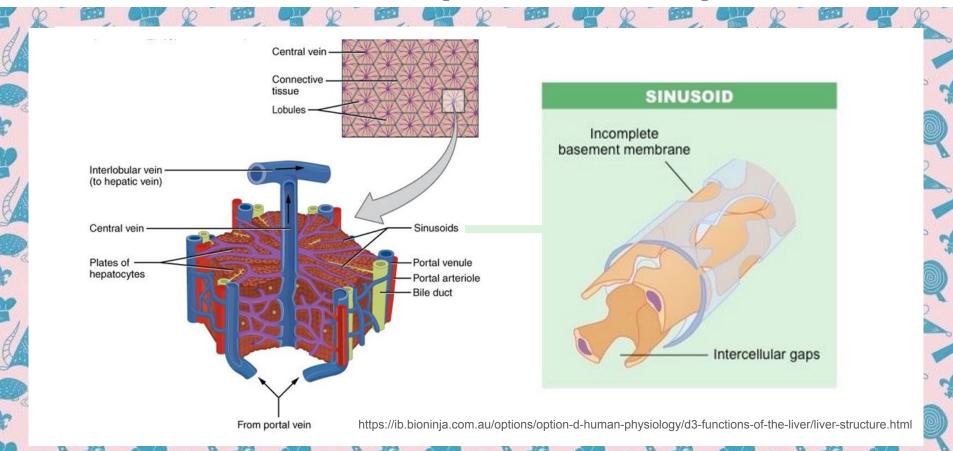

Biochemical test

- Liver injury AST, ALT, LDH
- Bile flow ALP, GGT, 5'NT
- Endogenous metabolite Ammonia

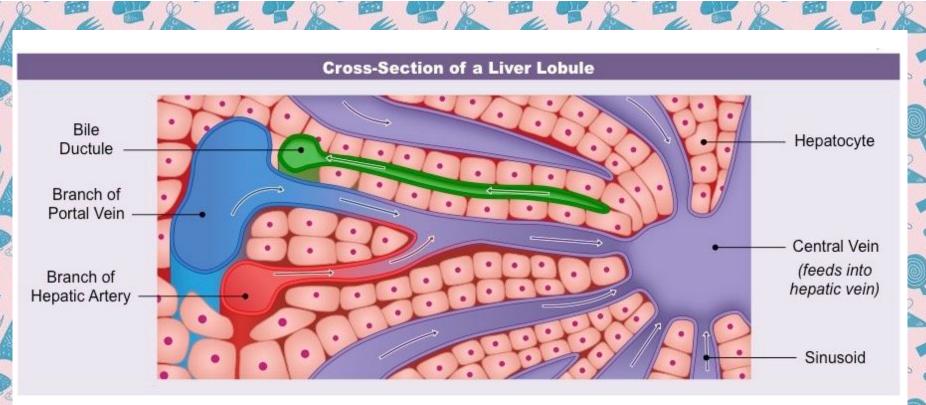

Function test

- Synthetic
 Albumin
 Hemostasis
 - Lipoprotein
- Excretory Bilirubin
- Special test
- Approach to abnormal liver function testQuiz

Anatomy



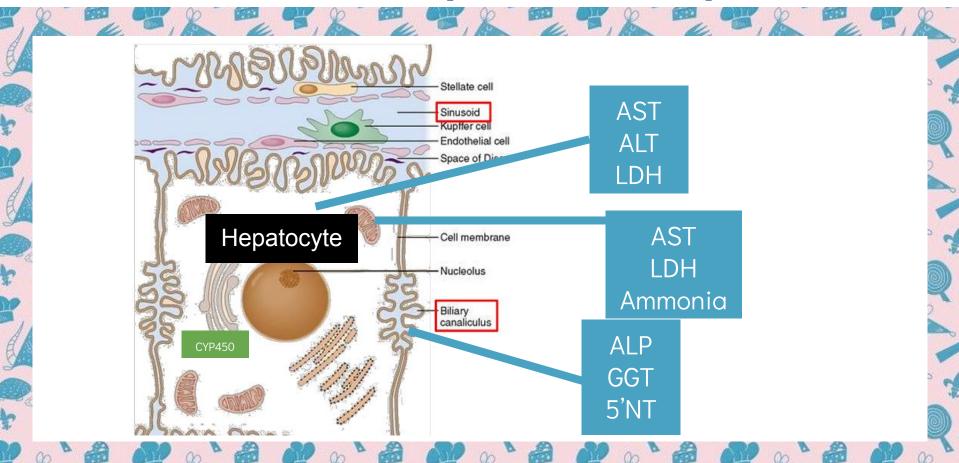
Anatomy



https://ib.bioninja.com.au/options/option-d-human-physiology/d3-functions-of-the-liver/liver-structure.html

Microscopic anatomy

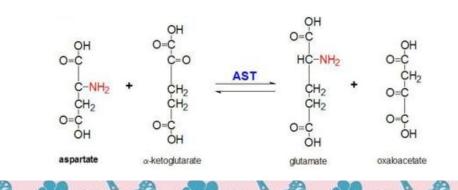
Microscopic anatomy



https://ib.bioninja.com.au/options/option-d-human-physiology/d3-functions-of-the-liver/liver-structure.html

BIOCHEMICAL TEST

Liver injury * **Bile flow** Endogenous metabolite -

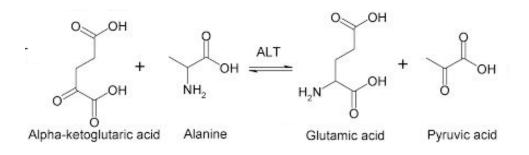

Microscopic anatomy

Evaluate liver injury

1. Aspatate aminotransferase (AST)

- transfer amino group from aspatate to ketoglutaric acid for oxaloacetic forming (substrate of Krebs cycle)
- found in cytoplasm and mitochondria of liver, skeletal muscle, cardiac muscle, brain, kidney, red blood cell, pancreas
- clearance by reticuloendothelial system (T_{1/2} = 17 hr.)

1. Aspatate aminotransferase (AST)


Normal value

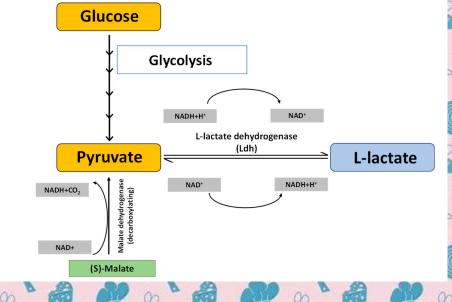
Age	U/L
Preterm	29-59
0-14 days	32-162
15 day - 1 year	20-67
1-12 years	21-36
12-18 years - Male - Female	14-35 13-26

level does not correlate with severity of liver disease

2. Alanine aminotransferase (ALT)

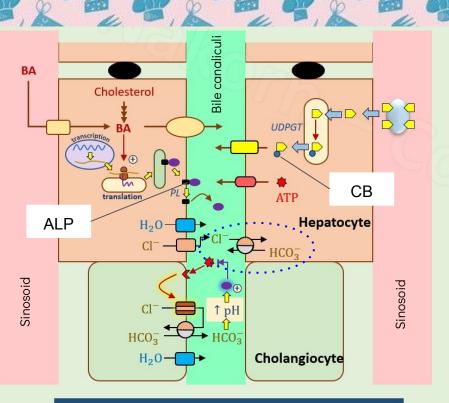
- transfer amino group from alanine to ketoglutaric acid for pyruvic forming (substrate of Krebs cycle)
- found in cytoplasm of liver **more specific than AST
- clearance by reticuloendothelial system ($T_{1/2}$ = 47 hr.)

2. Alanine aminotransferase (ALT)


Normal value

Age	U/L
Preterm	11-15
0-1 year	5-33
1-12 years	9-25
12-18 years - Male - Female	9-26 8-22

level does not correlate with severity of liver disease


3. Lactate dehydragenase (LDH)

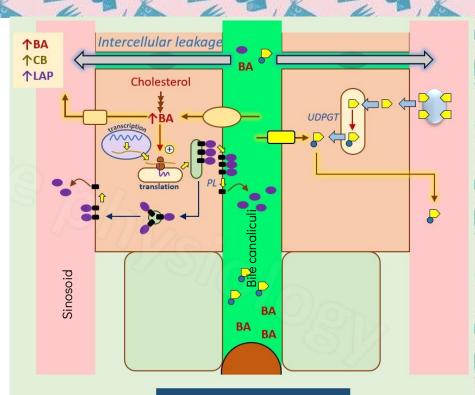
- convert pyruvate to lactate
- found in cytoplasm and mitochondria of several organ
- elevate LDH : rhabdomyolysis, acute kidney injury, hemolysis, ischemic hepatitis, infection, malignancy, fracture

Evaluate bile flow

Normal physiology of bile flow

Function: Negative regulator of bile flow

Content in bile canaliculi
1. Bile acid (BA)
2. Conjugated bilirubin (CB)
3. Fluid and Electrolyte
4. ALP (regulate by BA production)
5. ATP


In bile duct

- ATP stimulate Cl transport to lumen
- Cl move to intracellular by Cl-HCO₃ exchange
- pH in bile duct is increased by HČO3 in lumen
- ALP hydrolyse ATP
 - \rightarrow Decrease HCO₃ secretion

Physiology in cholestasis

Obstruction of bile flow

- accumulate of BA,CB in hepatocyte
- increase intracellular BA stimulate ALP production
- BA,CB,ALP reflux to sinusoid due to increased pressure in bile canaliculi

Change in cholestasis

1. Alkaline phosphatase (ALP)

- hydrolyze organic phosphate ester (ATP,ADP,AMP) in bile regulation process
- found in **liver (canalicular membrane), bone**, small intestine, kidney, placenta, WBC
- ALP level in **children is higher than adult** due to bone growth. (peak at 10-15 years)

 $T_{1/2} = 1$ week

1. Alkaline phosphatase (ALP)

Normal value

Age	U/L
Preterm	57-330
0-14 days	90-273
15 day - 1 year	134-518
1-10 years	156-369
10-13 years	141-460
13-15 years	127-517 (M), 92-280 (F)
15-17 years	89-365 (M), 54-128 (F)
17-19 years	59-164 (M), 48-95 (F)

Elevation of ALP

Physiologic	Pathologic
 Pregnancy Adolescent Transient hyperphosphatemia of infancy Benign familial hyperphosphatasemia of intestinal origin Blood group O Macro-ALP 	 Biliary tract obstruction Primary biliary cirrhosis Primary sclerosing cholangitis Medication: steroid Bile ductopenia Liver metastatic malignancy Bone disease eg. Rickets Chronic kidney disease

on

0

2. Gamma glutamyltransferase (GGT)

- transfer gamma glutamyl group between peptide
- found in cell membrane of **hepatocyte**, **cholangiocyte**
- found in other organ: kidney, pancreas, spleen, small intestine, heart, brain and seminal vesicles
- GGT level was peak in neonatal period.

2. Gamma glutamyltransferase (GGT)

Normal value

Age	U/L
Preterm	7-807
0-14 days	19-383
15 days - 1 years	8-127
>1-18 years	6-21

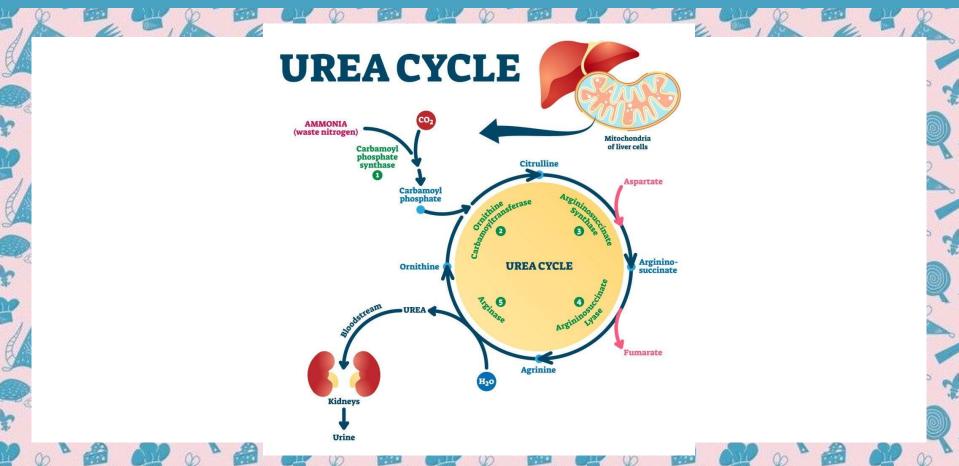
2. Gamma glutamyltransferase (GGT)

Elevate of GGT

- Hepatobiliary diseases eg. Biliary tract obstruction, Alagille syndrome, progressive familial intrahepatic cholestasis type 3
- Pancreatic diseases
- COPD
- CKD
- Diabetic melitus
- Myocardial infarcton
- Medication; carbamazepine, phenytoin, barbiturates

3. 5'Nucleotidase (5'NT)

- hydrolysis enzyme of nucleotide eg. Adenosine 5-phosphate, Inosine
 5-phosphate
- found in liver, intestine, brain, heart, vessel, pancreas


Origin of enzyme

	Liver	Pancreas	Bone	Intestine	Brain	Heart	Other
ALP	••		••	•			•
GGT	•	•		•	•	•	•
5'-NT	•	•		•	•	•	•

Endogenous metabolite

the second second second and the second seco

Ammonia metabolism

Ammonia

- produced by bacteria in intestine
- metabolite to urea by urea cycle in liver
- amonia level **dose not corelate with severity of liver disease** and hepatic encephalopathy

Ammonia

Elevate of ammonia level

- Liver disease; Fullminant hepatitis, Chronic hepatitis, Cirrhosis
- Portosystemic shunts
- Urea cycle defect
- Mitochondrial fatty acid beta oxidation defect
- Reye syndrome
- Chronic kidney disease
- Medication eg. Valproic acid

Ammonia

Normal value

Age	µmol/L
Newborn	64-107
0-14 days	56-92
2 weeks - 18 years	21-50
>18 years	11-32

00

00

FUNCTION TEST

Synthetic * Excretory Special test

 \gg

Synthetic function

1. Albumin

- maintain intravascular oncotic pressure
- produce by liver about 150 mg/kg/day
- $T_{1/2} = 14-21 \text{ days} \rightarrow \text{ not found low albumin in acute liver failure}$

Low albumin level was found in several cause

- chronic liver disease
- malnutrition
- protein losing enteropathy
- chronic systemic inflammation
- Nephrotic syndrome

Albumin

Normal value

Age	g/dL
Preterm	1.1-3.9
0-14 days	2.6-4.3
15 days - 1 year	2.8-4.7
1-8 years	3.8-4.7
8-15 years	4.1-4.8
>15 years	4.1-5.1 (M) , 4.0-4.0 (F)

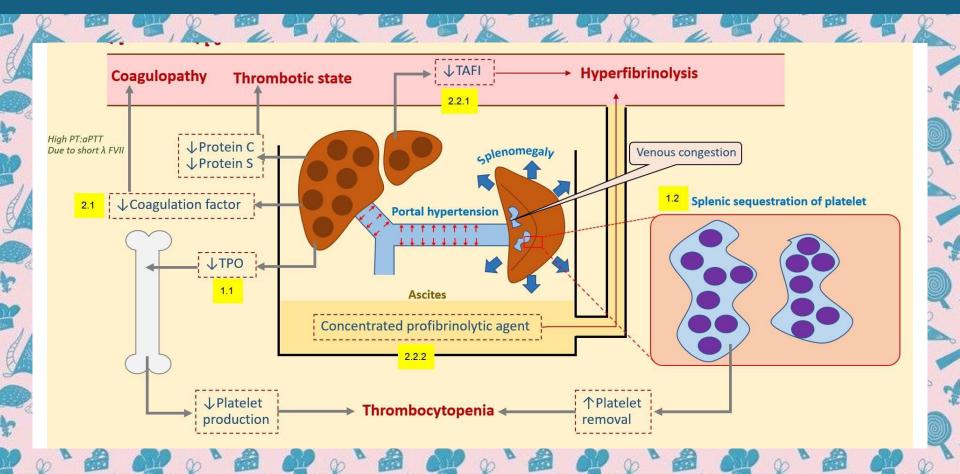
0

00

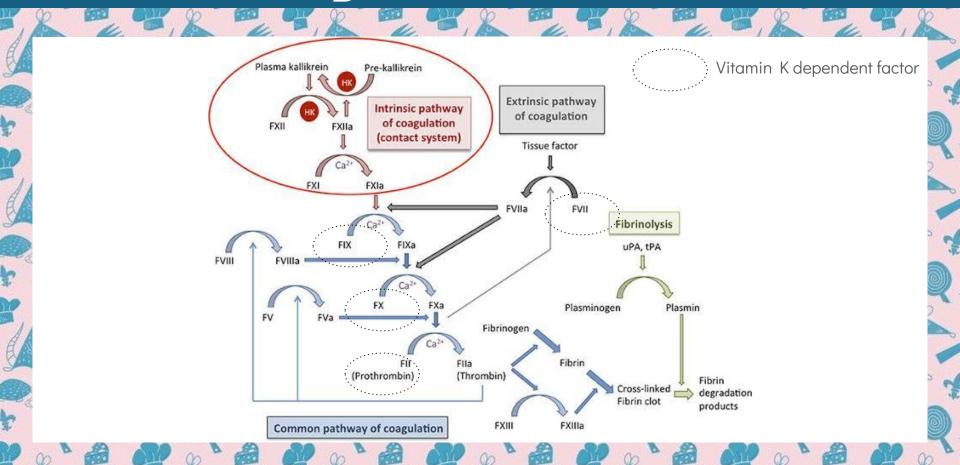
Or

0

2. Coagulopathy


Abnormal hemostasis in liver disease

- Impair synthesis of coagulation factor
 - $\rightarrow\,$ fibrinogen, prothrombin, factor V, factor VII, factor IX, factor X, factor XI
 - Vitamin K deficiency due to impair fat soluble vitamin absorption
 - \rightarrow decreased vitlamin K dependent coagulation factor

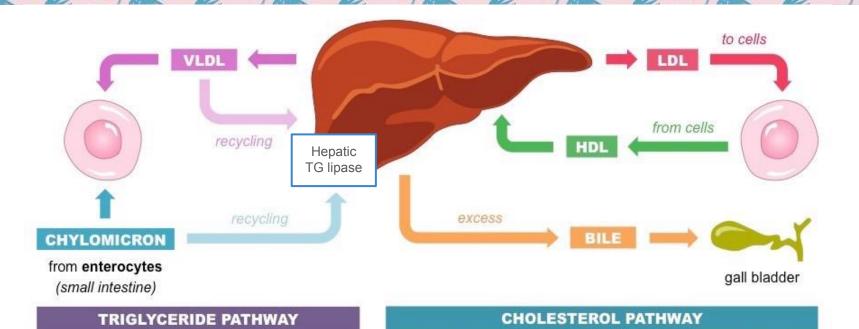

Factor VII is the shortest half-life ($T_{1/2} = 6hr$) \rightarrow prolong PT/INR

- Impair Alpha 2-plasmin inhibitor production \rightarrow Increase fibrinolysis
- Hypersplenism → Thrombocytopenia

Abnormal hemostasis in liver disease

Coagulation cascade

3. Lipoprotein

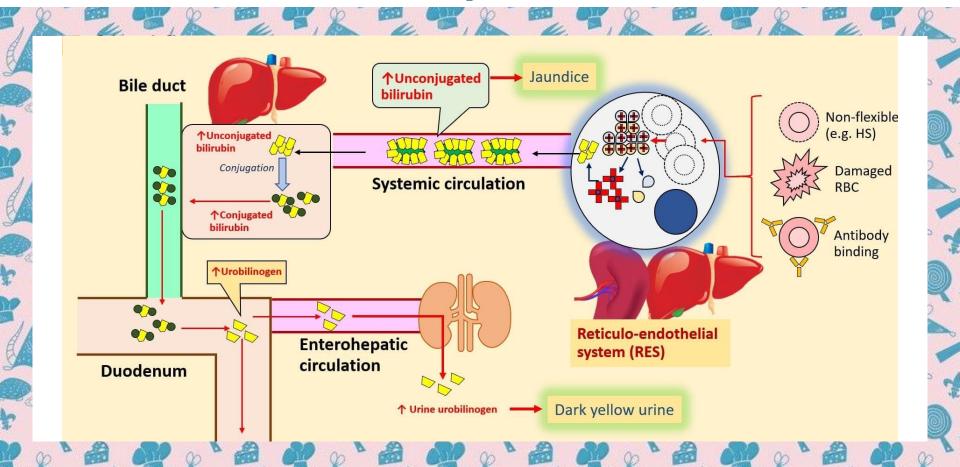

Abnormal lipoprotein metabolism in liver disease

- Cholestasis \rightarrow phospholipid reflux to circulation and form Lipoprotein X

 \rightarrow increase serum cholesterol

- Acute liver injury \rightarrow decrease lecithin cholesterol acyltransferase and TG lipase \rightarrow high serum LDL, TG
- Chronic liver disease \rightarrow low serum cholesterol

Physiology of lipid transport



Triglycerides are transported to cells by VLDL (from liver) or chylomicrons (from intestine) for energy use or storage (i.e. adipose tissue) Cholesterol is transported to cells by LDL for use in plasma membranes and steroid synthesis, while excess cholesterol

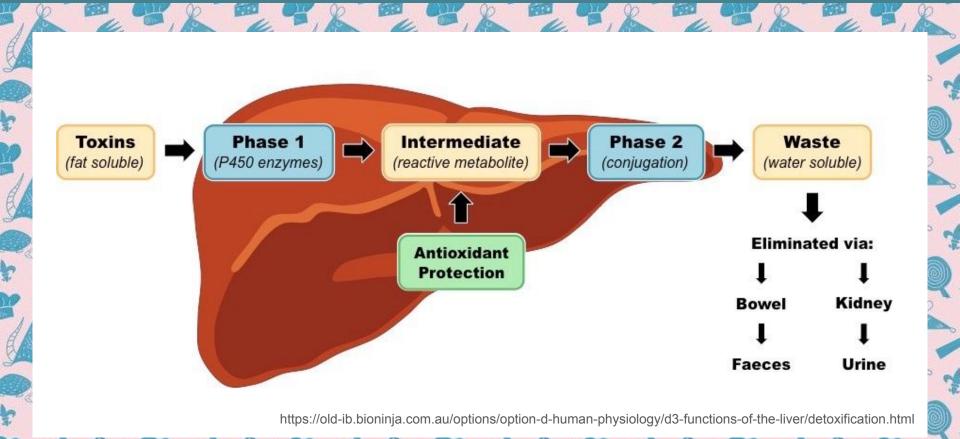
is moved from cells by HDL to be converted by liver into bile

Excretory function

Excretory function

Bilirubin

- Produced from heme in reticuloendothelial cells about 4 mg/kg/day
- Heme \rightarrow Biliverdin \rightarrow Unconjugate bilirubin \rightarrow transport to liver
- Unconjugate bilirubin is conjugated by **UDP glucuronosyltransferase** then. excrete to bile canaliculi
- Conjugated bilirubin is hydrolyzed by intestinal bacteria
 1. Urobilinogen
 - 2. Stercobilinogen

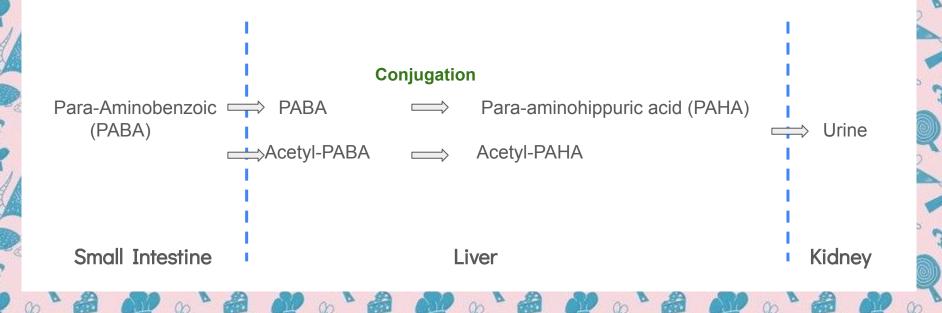

Bilirubin

Normal value

Age	Total (mg/dL)	Conjugated (mg/dL)
0-14 days	0.2-16.6	0.3-1.0
15 days - 1 years	0.3-1.2	0.1-0.4

- **Direct Hyperbilirubinemia** DB > 20% of TB
- DB > 1 mg/dL if TB < 5 mg/dL

Liver detoxification

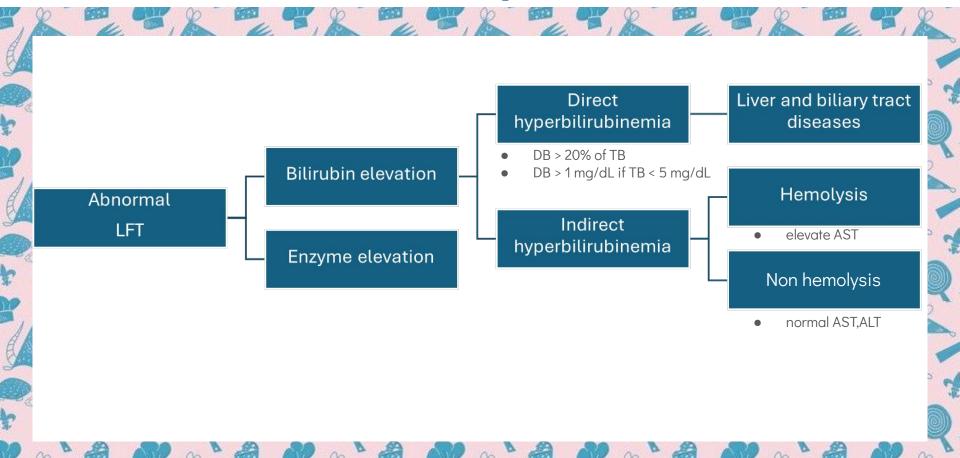

- 1. Caffeine clearance
- Evaluate CYP 1A2 function (Phase I)
- Measure blood caffeine level after cafferine consuption 200 mg

2. Lidocaine metabolite formation (MEGX test)

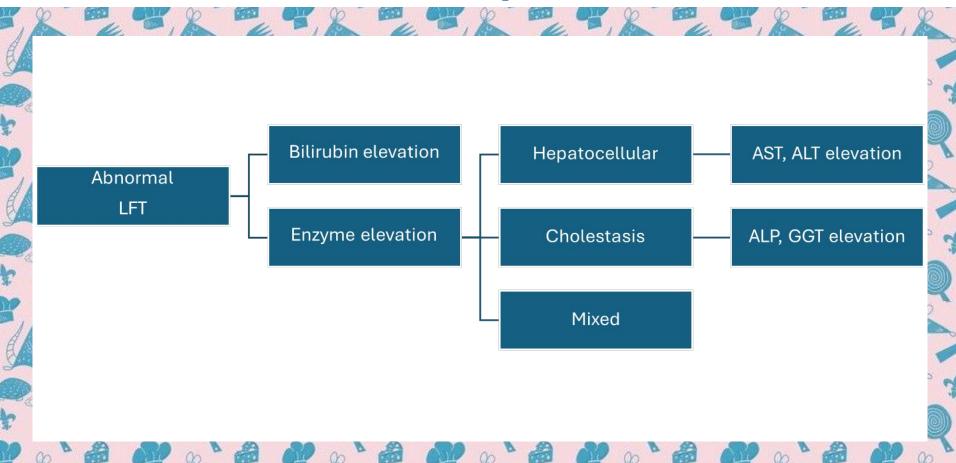
- Evaluate CYP 3A4 function (Phase I)
- Use to evaluate function for liver transplantation
- Lidocaine 1 mg/kg IV then measure monoethylglycinexylidide at 15, 30, 60 min

3. Para-aminobenzoic acid (PABA) test

• Evaluate conjugate function in **phase II** of hepatic biotransformation

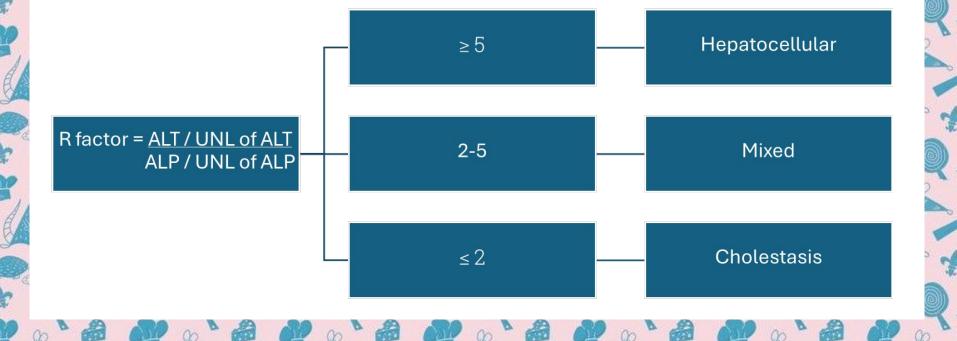

Approach to Abnormal Liver function test

© 2020 Disney/Pixa


3 steps approach

- 1. Evaluate pattern of abnormal LFT
 - hepatocellular
 - cholestasis
 - mixed
- 2. Evaluate cause of abnormal LFT
- 3. Evaluate prognosis

Evaluate pattern


Evaluate pattern

Evaluate pattern

R factor

for evaluate pattern of acute liver injury and drug induced liver injury (DILI)

INFECTIOUS

Hepatotropic viruses

- HAV
- HBV
- HCV
- HDV
- HEV
- Hepatitis non–A-E viruses
- Systemic infection that can include hepatitis
- Adenovirus
- Arbovirus
- Coxsackievirus
- Cytomegalovirus
- Enterovirus
- Epstein-Barr virus
- "Exotic" viruses (e.g., yellow fever)
- Herpes simplex virus
- Human immunodeficiency virus
- Paramyxovirus
- Rubella
- Varicella zoster

Other

NONVIRAL LIVER INFECTIONS

Abscess Amebiasis Bacterial sepsis Brucellosis Fitz-Hugh-Curtis syndrome Histoplasmosis Leptospirosis Tuberculosis Other

AUTOIMMUNE

Autoimmune hepatitis Sclerosing cholangitis Other (e.g., systemic lupus erythematosus, juvenile rheumatoid arthritis)

METABOLIC

α₁-Antitrypsin deficiency Tyrosinemia Wilson disease Other

TOXIC

latrogenic or drug induced (e.g., acetaminophen) Environmental (e.g., pesticides)

ANATOMIC

Choledochal cyst Biliary atresia Other

HEMODYNAMIC

Shock Congestive heart failure Budd-Chiari syndrome Other

NONALCOHOLIC FATTY LIVER DISEASE

Idiopathic Reye syndrome Other

Nelson Text book of Pediatrics 21st edition.

Table 362-1 Disorders Producing Chronic Hepatitis

Chronic viral hepatitis

- Hepatitis B
- Hepatitis C
- Hepatitis D

Autoimmune hepatitis

- Anti-actin antibody positive
- Anti-liver-kidney microsomal antibody positive
- Anti-soluble liver antigen antibody-positive
- Others (includes antibodies to liver-specific lipoproteins or asialoglycoprotein)
- Overlap syndrome with sclerosing cholangitis and autoantibodies
- Systemic lupus erythematosus
- Celiac disease

Drug-induced hepatitis

Metabolic disorders associated with chronic liver disease

- Wilson disease
- Nonalcoholic steatohepatitis
- α_1 -Antitrypsin deficiency
- Tyrosinemia
- Niemann-Pick disease type 2
- Glycogen storage disease type iv
- Cystic fibrosis
- Galactosemia
- Bile acid biosynthetic abnormalities

Nelson Text book of Pediatrics 21st edition.

Elevate of AST and ALT (>10-15 times of upper normal limit)

- Acute viral hepatitis
- Toxin/Drug induced hepatitis
- Ischemic hepatitis
- Autoimmune hepatitis
- Fulminant Wilson's disease
- Acute bile duct obstruction

Elevate of AST and ALT (< 10 times of upper normal limit)

- 1. AST > ALT
 - Toxin/Drug induced hepatitis
 - Ischemic hepatitis
 - Alcoholic hepatitis (AST:ALT ratio usually more than 2)
 - Wilson's disease
- 2. ALT > AST
 - Chronic viral hepatitis
 - Non alcoholic fatty liver disease (NAFLD)
 - Autoimmune hepatitis
 - Hemochromatosis
 - Alpha 1-Antitripsin deficiency

Isolated elevate AST : hemolysis, myopathy, myocardial disease, rhabdomyolysis

Cholestatic cause

INFECTIOUS

Generalized bacterial sepsis Viral hepatitis

- Hepatitides A, B, C, D, E
- Cytomegalovirus
- Rubella virus
- Herpesviruses: herpes simplex, human herpesvirus 6 and 7
- Varicella virus
- Coxsackievirus
- Echovirus
- Reovirus type 3
- Parvovirus B19
- HIV
- Adenovirus
- Others
- Toxoplasmosis
- Svphilis
- Tuberculosis
- Listeriosis
- Urinary tract infection

TOXIC

Sepsis Parenteral nutrition related Drug, dietary supplement, herbal related

Nelson Text book of Pediatrics 21st edition.

METABOLIC

- Disorders of amino acid metabolism
- Tvrosinemia
- Disorders of lipid metabolism
- Wolman disease
- Niemann-Pick disease (type C)
- Gaucher disease
- Cholesterol ester storage disease
- Disorders of carbohydrate metabolism
- Galactosemia
- Fructosemia
- Glycogenosis IV Disorders of bile acid biosynthesis
- Other metabolic defects
- α₁-Antitrypsin deficiency Cystic fibrosis
- Dubin-Johnson syndrome . Rotor syndrome
- Hypopituitarism
- Hypothyroidism
- Zellweger (cerebrohepatorenal) syndrome
- Wilson disease
- Neonatal iron storage disease
- Indian childhood cirrhosis/infantile copper overload
- Congenital disorders of glycosylation
- Mitochondrial hepatopathies
- Citrin deficiency

GENETIC OR CHROMOSOMAL Trisomies 17, 18, 21

INTRAHEPATIC CHOLESTASIS SYNDROMES

"Idiopathic" neonatal hepatitis

Alagille syndrome

Intrahepatic cholestasis (progressive familial intrahepatic cholestasis [PFIC])

- FIC-1 deficiency
- BSEP (bile salt export pump) deficiency
- MDR3 deficiency
- Familial benign recurrent cholestasis associated with lymphedema (Aagenaes syndrome)
- ARC (arthrogryposis, renal dysfunction, and cholestasis) syndrome Caroli disease (cystic dilation of intrahepatic ducts)

anepa

Cholestatic cause

Extrahepati

EXTRAHEPATIC DISEASES

Biliary atresia Sclerosing cholangitis Bile duct stricture/stenosis Choledochal-pancreaticoductal junction anomaly Spontaneous perforation of the bile duct Choledochal cyst Mass (neoplasia, stone) Bile/mucous plug ("inspissated bile")

MISCELLANEOUS Shock and hypoperfusion Associated with enteritis Associated with intestinal obstruction Neonatal lupus erythematosus Myeloproliferative disease (trisomy 21) Hemophagocytic lymphohistiocytosis (HLH) COACH syndrome (coloboma, oligophrenia, ataxia, cerebellar vermis hypoplasia, hepatic fibrosis) Cholangiocyte cilia defects

Nelson Text book of Pediatrics 21st edition.

Non hemolytic indirect hyperbilirubinemiaa

DECREASED DELIVERY OF UNCONJUGATED BILIRUBIN

(IN PLASMA) TO HEPATOCYTE Right-sided congestive heart failure Portacaval shunt

DECREASED BILIRUBIN UPTAKE ACROSS HEPATOCYTE MEMBRANE

Presumed enzyme transporter deficiency Competitive inhibition

- Breast milk jaundice
- Lucey-Driscoll syndrome
- Drug inhibition (radiocontrast material) Miscellaneous
- Hypothyroidism
- Hypoxia
- Acidosis

DECREASED STORAGE OF UNCONJUGATED BILIRUBIN IN CYTOSOL (DECREASED Y AND Z PROTEINS)

Competitive inhibition Fever

DECREASED BIOTRANSFORMATION (CONJUGATION)

Neonatal jaundice (physiologic) Inhibition (drugs) Hereditary (Crigler-Najjar) • Type I (complete enzyme deficiency)

• Type II (partial deficiency) Gilbert disease

Hepatocellular dysfunction

ENTEROHEPATIC RECIRCULATION

Breast milk jaundice Intestinal obstruction

- Ileal atresia
- Hirschsprung disease
- Cystic fibrosis
- Pyloric stenosis

Antibiotic administration

Nelson Text book of Pediatrics 21st edition.

Drug induce liver injury (DILI)

Drug induce liver injury can elevate enzyme in hepatocellular, cholestasis or mix pattern

LiverTox

Clinical and Research Information on Drug-Induced Liver Injury

Bethesda (MD): <u>National Institute of Diabetes and Digestive and Kidney Diseases;</u> 2012-.

Copyright and Permissions

Search this book

Acute liver failure

Acute liver failure

- Biochemical evidences of liver injury
- INR > 2 or INR > 1.5 with hepatic encephalopathy
- No evidence of chronic liver disease

Acute ontop chronic liver failure

- TB > 5 mg/dL
- INR > 1.5
- Ascites and/or Hepatic encephalopathy
- Onset within 4 weeks
- Evidence of chronic liver disease

Evaluate prognosis

Predict mortality in Cirrhosis

- Child-Turcotte-Pugh prognostic score
- Pediatric end stage liver disease score (PELD) (age < 12 years)
- Model for end stage liver disease score (MELD) (age <u>></u> 12 years)

Predict mortality in Wilson's disease

• New Wilson index (NWI)

Predict mortality and selection criteria for liver transplantation in acute liver failure

- King's college criteria for paracetamol induce acute liver failure
- King's college criteria for non-paracetamol acute liver failure

Child-Turcotte-Pugh score

Parameters	Point		
	1	2	3
Serum Bilirubin (mg/dL)	2	2-3	>3
Serum Albumin (g/dL)	>3.5	2.8-3.5	<2.8
Prothrombin time (s)	1-4	5-6	>6
Hepatic encephalopathy	None	Minimal	Advanced
Ascites	None	Slight	Moderate

Child-Turcotte-Pugh score

Classification	Survival rate		
	1 year	2 years	
A (5-6 points)	100% 85%		
B (7-9 points)	80%	60%	
C (10-15 points)	45%	35%	

PELD & MELD

PELD Score (Pediatric End-Stage Liver

Disease) (younger than 12) \overleftrightarrow

Calculates the pediatric version of the MELD score for liver cirrhosis severity and transplant planning.

When to Use 🗸		
Age	years	
Bilirubin	Norm: 0.3 - 1. mg/dL 👙	
Albumin	Norm: 3.5 - 5.5 g/dL 🖕	
INR	Norm: 0.8 - 1.2	
History of growth failure <u>UNOS Growth Failure Chart</u>	No 0 Yes +1	

MELD Na (UNOS/OPTN)

Quantifies end-stage liver disease for transplant planning with sodium.

Dialysis at least twice in the past week Or CVVHD for ≥24 hours in the past week	No	Yes
Creatinine Cr >4.0 mg/dL is automatically assigned a value of 4.0	Norm: 0.7 -	1. mg/dL 🖕
Bilirubin	Norm: 0.3 -	1. mg/dL 4
INR	Norm: 0.8 -	1.2
Sodium	Norm: 136 -	1 mEq/L 4

New Wilson index

Parameters	Score				
4	0	1	2	3	4
Total bilirubin (mg/dL)	0-5.85	5.86-8.77	8.78-11.69	11.7-17.54	>17.55
AST (U/L)	0-100	101-150	151-300	301-400	>401
INR	0-1.29	1.3-1.6	1.7-1.9	2.0-2.4	>2.5
WBC (10 ⁹ /L)	0-6.7	6.8-8.3	8.4-10.3	10.4-15.3	>15.4
Albumin (g/dL)	>4.5	3.4-4.4	2.5-3.3	2.1-2.4	<2.0

Score \geq 11 : high mortality without liver transplant

King's college criteria

Criteria for liver transplant in fulminant liver failure

Paracetamol induced acute liver failure	Non-Paracetamol induced acute liver failure
 ABG pH < 7.3 after resuscitation and > 24 hr since ingestion OR Blood lactate > 3.5 mmol/L OR All of below INR > 6.5 Cr > 3.4 mg/dL Hepatic encephalopathy gr.III-IV 	 INR > 6.5 OR 3 of 5 following criteria 1. Etiology: indeterminate etiology, DILI 2. Age < 10 or > 40 years 3. Interval of juandice-encephalopathy > 7 days 4. Bilirubin > 17.6 mg/dL 5. INR > 3.5

Take Home messages

- Biochemical test : AST,ALT,ALP
 - \rightarrow Elevation of enzyme was found in hepatobiliary and non hepatobiliary disorder
 - \rightarrow Level dose not correlate with severity
- Function test : Synthetic, Excretion, Detoxification
- 3 steps approach abnormal LFT : pattern, cause, prognosis
 - \rightarrow R-value for evaluate pattern : Hepatocellular, Cholestasis, Mixed
- There are many etiology cause abnormal LFT
 - ightarrow History taking and physical examination lead to diagnosis
- Drug induce liver injury (DILI) cause abnormal liver enzyme in several pattern

References

- Nelson Text book of Pediatrics 21st edition.
- Ramathibodi Handbook of Pediatrics Diagnostic test 2020.
- Liver diseases in children. วรนุช จงศรีสวัสดิ์. ภาควิชากุมารเวชศาสตร์ คณะแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย.
- Approach to the patient with abnormal liver function test. พนิดา ทองอุทัยศรี. คณะแพทยศาสตร์ โรงพยาบาลรามาธิบดี.
- Interpretation of Liver function tests. World Health Organization (WHO) training-modules
- Nakorn Core physiology and medical science

Thank you, Happy Valentine's Day